PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Approximation of convex bodies by polytopes with respect to minimal width and diameter

Volume 149 / 2017

Marek Lassak Colloquium Mathematicum 149 (2017), 21-32 MSC: Primary 52A27. DOI: 10.4064/cm6856-7-2016 Published online: 3 April 2017


Denote by ${\mathcal K}^d$ the family of convex bodies in $E^d$ and by $w(C)$ the minimal width of $C \in {\mathcal K}^d$. We ask what is the greatest number $\varLambda _n ({\mathcal K}^d)$ such that every $C \in {\mathcal K}^d$ contains a polytope $P$ with at most $n$ vertices for which $\varLambda _n ({\mathcal K}^d) \leq {w(P)/w(C)}$. We give a lower estimate of $\varLambda _n ({\mathcal K}^d)$ for $n \geq 2d$ based on estimates of the smallest radius of $\lfloor {{n/2}} \rfloor $ antipodal pairs of spherical caps that cover the unit sphere of $E^d$. We show that $\varLambda _3 ({\mathcal K}^2) \geq {\frac 1 2}(3- \sqrt 3)$, and $\varLambda _n ({\mathcal K}^2) \geq \cos {\frac \pi {2 \lfloor {n/2} \rfloor }}$ for every $n \geq 4$. We also consider the dual question of estimating the smallest number $\Delta _n ({\mathcal K}^d)$ such that for every $C \in {\mathcal K}^d$ there exists a polytope $P\supset C$ with at most $n$ facets for which ${{\rm diam}(P)/{\rm diam}(C)} \leq \Delta _n ({\mathcal K}^d)$. We give an upper bound of $\Delta _n ({\mathcal K}^d)$ for $n \geq 2d$. In particular, $\Delta _n ({\mathcal K}^2) \leq 1/\cos {\frac \pi {2 \lfloor {n/2} \rfloor }}$ for $n \geq 4$.


  • Marek LassakInstitute of Mathematics and Physics
    University of Technology and Life Sciences
    85-789 Bydgoszcz, Poland

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image