PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Notes on Drinfeld twists of multiplier Hopf algebras

Volume 157 / 2019

Tao Yang, Zhi Chen, Xiaoyan Zhou Colloquium Mathematicum 157 (2019), 279-293 MSC: Primary 16T05; Secondary 16T99, DOI: 10.4064/cm7545-8-2018 Published online: 31 May 2019

Abstract

This paper determines how the integral changes under a Drinfeld twist in multiplier Hopf algebras. For a multiplier Hopf algebra $A$ with a Drinfeld twist $J$, we construct a new multiplier Hopf algebra $A^{J}$. If $A$ is quasitriangular, then so is $A^{J}$. Finally, for a counimodular algebraic quantum group $A$, $A^{J}$ is an algebraic quantum group, and as an application we give a formula for integrals of $H^{J}$, where $H$ is an infinite-dimensional counimodular coFrobenius Hopf algebra.

Authors

  • Tao YangDepartment of Mathematics
    Nanjing University
    Nanjing 210093, Jiangsu, China
    e-mail
  • Zhi ChenCollege of Science
    Nanjing Agricultural University
    Nanjing 210095, Jiangsu, China
    e-mail
  • Xiaoyan ZhouDepartment of Mathematics
    Nanjing University
    Nanjing 210093, Jiangsu, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image