Lipschitz $(p,\sigma ,q,\eta )$-dominated operators
Nahuel Albarracín, Amar Bougoutaia, Amar Belacel, Pablo Turco
Colloquium Mathematicum 178 (2025), 211-229
MSC: Primary 47L20; Secondary 46E15, 47B10, 26A16
DOI: 10.4064/cm9434-5-2025
Published online: 1 July 2025
Abstract
Given $1\leq p,q \lt \infty $ and $0\leq \sigma ,\eta \lt 1$ such that $\frac{1-\sigma}{p}+\frac{1-\eta }{q}\leq 1,$ we continue the study of the Banach Lipschitz ideal of $(p,\sigma ,q,\eta )$-dominated operators initiated by Saleh. Among other results, we introduce an associated Lipschitz tensor norm, implying that it is a maximal Banach Lipschitz operator ideal. Also, we show that this ideal extends the Banach operator ideal of $(p,\sigma ,q,\eta )$-dominated operators. Finally, we exhibit other Lipschitz operator ideals which also extend this operator ideal and we compare them with each other.
Authors
- Nahuel AlbarracínIMAS–UBA–CONICET
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
1428 Buenos Aires, Argentina
e-mail
- Amar BougoutaiaLaboratory of Pure and
Applied Mathematics (LPAM)
University of Laghouat
Laghouat, Algeria
e-mail
- Amar BelacelLaboratory of Pure and
Applied Mathematics (LPAM)
University of Laghouat
Laghouat, Algeria
e-mail
- Pablo TurcoIMAS–UBA–CONICET
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
1428 Buenos Aires, Argentina
e-mail