Full embeddings of almost split sequences over split-by-nilpotent extensions

Volume 81 / 1999

Ibrahim Assem, Dan Zacharia Colloquium Mathematicum 81 (1999), 21-31 DOI: 10.4064/cm-81-1-21-31

Abstract

Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.

Authors

  • Ibrahim Assem
  • Dan Zacharia

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image