## Filters and sequences

### Volume 163 / 2000

Fundamenta Mathematicae 163 (2000), 215-228
DOI: 10.4064/fm-163-3-215-228

#### Abstract

We consider two situations which relate properties of filters with properties of the limit operators with respect to these filters. In the first one, we show that the space of sequences having limits with respect to a $Π^0_3$ filter is itself $Π^0_3$ and therefore, by a result of Dobrowolski and Marciszewski, such spaces are topologically indistinguishable. This answers a question of Dobrowolski and Marciszewski. In the second one, we characterize universally measurable filters which fulfill Fatou's lemma.