Whitney arcs and 1-critical arcs

Volume 199 / 2008

Marianna Csörnyei, Jan Kališ, Luděk Zajíček Fundamenta Mathematicae 199 (2008), 119-130 MSC: Primary 26B05; Secondary 26A30. DOI: 10.4064/fm199-2-2

Abstract

A simple arc $\gamma \subset \mathbb R^n$ is called a Whitney arc if there exists a non-constant real function $f$ on $\gamma$ such that $\lim_{y\to x,\, y\in \gamma}{{|f(y)-f(x) |}/{|y-x|}}=0$ for every $ x\in \gamma$; $\gamma$ is $1$-critical if there exists an $f \in C^1(\mathbb R^n)$ such that $f'(x)=0$ for every $x \in \gamma$ and $f$ is not constant on $\gamma$. We show that the two notions are equivalent if $\gamma$ is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc $\gamma$ in $\mathbb R^2$ each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This answers completely a problem of G. Petruska which was solved for $n\geq 3$ by the first author in 1999.

Authors

  • Marianna CsörnyeiDepartment of Mathematics
    University College London
    Gower Street, London
    WC1E 6BT, United Kingdom
    e-mail
  • Jan KališDepartment of Mathematical Sciences
    Florida Atlantic University
    777 Glades Road
    Boca Raton, FL 33431, U.S.A.
    e-mail
  • Luděk ZajíčekDepartment of Mathematical Analysis
    Charles University
    Sokolovská 83
    186 75 Praha 8, Czech Republic
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image