$F_{\sigma}$-additive covers of Čech complete and scattered-$K$-analytic spaces
Volume 199 / 2008
Fundamenta Mathematicae 199 (2008), 131-138
MSC: 54H05, 28A05.
DOI: 10.4064/fm199-2-3
Abstract
We prove that an $F_\sigma $-additive cover of a Čech complete, or more generally scattered-$K$-analytic space, has a $\sigma $-scattered refinement. This generalizes results of G. Koumoullis and R. W. Hansell.