A series whose sum range is an arbitrary finite set

Volume 171 / 2005

Jakub Onufry Wojtaszczyk Studia Mathematica 171 (2005), 261-281 MSC: 46B15, 40A30. DOI: 10.4064/sm171-3-4


In finite-dimensional spaces the sum range of a series has to be an affine subspace. It has long been known that this is not the case in infinite-dimensional Banach spaces. In particular in 1984 M. I. Kadets and K. Woźniakowski obtained an example of a series whose sum range consisted of two points, and asked whether it was possible to obtain more than two, but finitely many points. This paper answers this question affirmatively, by showing how to obtain an arbitrary finite set as the sum range of a series in any infinite-dimensional Banach space.


  • Jakub Onufry WojtaszczykDepartment of Mathematics,
    Computer Science and Mechanics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image