Spectral properties of quotients of Beurling-type submodules of the Hardy module over the unit ball
Volume 177 / 2006
Studia Mathematica 177 (2006), 141-152
MSC: 47A13, 47A20, 46H25, 46C99.
DOI: 10.4064/sm177-2-4
Abstract
Let $M$ be a Beurling-type submodule of $H^2(\mathbb{B}_d),$ the Hardy space over the unit ball ${\mathbb{B}_d}$ of $\mathbb{C}^d$, and let $N=H^2(\mathbb{B}_d)/M$ be the associated quotient module. We completely describe the spectrum and essential spectrum of $N$, and related index theory.