A+ CATEGORY SCIENTIFIC UNIT

Isomorphisms of some reflexive algebras

Volume 187 / 2008

Jiankui Li, Zhidong Pan Studia Mathematica 187 (2008), 95-100 MSC: Primary 47B47, 47L35. DOI: 10.4064/sm187-1-5

Abstract

Suppose $\mathcal L_1$ and $\mathcal L_2$ are subspace lattices on complex separable Banach spaces $X$ and $Y$, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from $\mathop{\rm alg}\mathcal L_1$ to $\mathop{\rm alg}\mathcal L_2$ is quasi-spatial; in particular, if a subspace lattice $\mathcal L$ of a complex separable Banach space $X$ contains a sequence $E_i$ such that $(E_i)_ -\neq X$, $E_i \subseteq E_{i+1}$, and $\bigvee_{i=1}^{\infty} E_i = X$ then every automorphism of $\mathop{\rm alg} \mathcal L$ is quasi-spatial.

Authors

  • Jiankui LiDepartment of Mathematics
    East China University of Science and Technology
    Shanghai 200237, P.R. China
    e-mail
  • Zhidong PanDepartment of Mathematics
    Saginaw Valley State University
    University Center, MI 48710, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image