Isomorphisms of some reflexive algebras
Volume 187 / 2008
                    
                    
                        Studia Mathematica 187 (2008), 95-100                    
                                        
                        MSC: Primary 47B47, 47L35.                    
                                        
                        DOI: 10.4064/sm187-1-5                    
                                    
                                                Abstract
Suppose $\mathcal L_1$ and $\mathcal L_2$ are subspace lattices on complex separable Banach spaces $X$ and $Y$, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from $\mathop{\rm alg}\mathcal L_1$ to $\mathop{\rm alg}\mathcal L_2$ is quasi-spatial; in particular, if a subspace lattice $\mathcal L$ of a complex separable Banach space $X$ contains a sequence $E_i$ such that $(E_i)_ -\neq X$, $E_i \subseteq E_{i+1}$, and $\bigvee_{i=1}^{\infty} E_i = X$ then every automorphism of $\mathop{\rm alg} \mathcal L$ is quasi-spatial.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            