Combinatorial inequalities and subspaces of $L_1$

Volume 211 / 2012

Joscha Prochno, Carsten Schütt Studia Mathematica 211 (2012), 21-39 MSC: Primary 46B03; Secondary 46B45. DOI: 10.4064/sm211-1-2

Abstract

Let $M_1$ and $M_2$ be N-functions. We establish some combinatorial inequalities and show that the product spaces $\ell ^n_{M_1}(\ell _{M_2}^{n})$ are uniformly isomorphic to subspaces of $L_1$ if $M_1$ and $M_2$ are “separated” by a function $t^{r}$, $1< r< 2$.

Authors

  • Joscha ProchnoMathematisches Seminar
    Christian-Albrechts-Universität zu Kiel
    24098 Kiel, Germany
    e-mail
  • Carsten SchüttMathematisches Seminar
    Christian-Albrechts-Universität zu Kiel
    24098 Kiel, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image