PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Unconditionality of orthogonal spline systems in $H^1$

Volume 226 / 2015

Gegham Gevorkyan, Anna Kamont, Karen Keryan, Markus Passenbrunner Studia Mathematica 226 (2015), 123-154 MSC: 42C10, 46E30. DOI: 10.4064/sm226-2-2

Abstract

We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order $k$ is an unconditional basis in the atomic Hardy space $H^1[0,1]$.

Authors

  • Gegham GevorkyanYerevan State University
    Alex Manoukian 1
    Yerevan, Armenia
    e-mail
  • Anna KamontInstitute of Mathematics
    Polish Academy of Sciences
    Wita Stwosza 57
    80-952 Gdańsk, Poland
    e-mail
  • Karen KeryanYerevan State University
    Alex Manoukian 1
    Yerevan, Armenia
    e-mail
  • Markus PassenbrunnerInstitute of Analysis
    Johannes Kepler University Linz
    Altenberger Strasse 69
    4040 Linz, Austria
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image