PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

An improved maximal inequality for 2D fractional order Schrödinger operators

Volume 230 / 2015

Changxing Miao, Jianwei Yang, Jiqiang Zheng Studia Mathematica 230 (2015), 121-165 MSC: 42B25, 35Q41. DOI: 10.4064/sm8190-12-2015 Published online: 27 January 2016

Abstract

The local maximal operator for the Schrödinger operators of order $\alpha \gt 1$ is shown to be bounded from $H^s(\mathbb {R}^2)$ to $L^2$ for any $s \gt 3/8$. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of $\alpha =2$. The extension from $\alpha =2$ to general $\alpha \gt 1$ faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable Galilean transformation in the deduction of the main theorem. We get around these difficulties by establishing a new reduction lemma and analyzing all the possibilities in using the separation of the segments to obtain the analogous bilinear $L^2$-estimates. To compensate for the absence of Galilean invariance, we resort to Taylor’s expansion for the phase function. The Bourgain–Guth inequality (2011) is also generalized to dominate the solution of fractional order Schrödinger equations.

Authors

  • Changxing MiaoInstitute of Applied Physics
    and Computational Mathematics
    100088 Beijing, China
    e-mail
  • Jianwei YangBeijing International Center
    for Mathematical Research
    Peking University
    100871 Beijing, China
    e-mail
  • Jiqiang ZhengUniversité Nice Sophia-Antipolis
    06108 Nice Cedex 02, France
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image