PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On embeddings of $C_0(K)$ spaces into $C_0(L,X)$ spaces

Volume 232 / 2016

Leandro Candido Studia Mathematica 232 (2016), 1-6 MSC: Primary 46E40; Secondary 46B25. DOI: 10.4064/sm7857-3-2016 Published online: 13 April 2016

Abstract

For a locally compact Hausdorff space $K$ and a Banach space $X$ let $C_0(K, X)$ denote the space of all continuous functions $f:K\to X$ which vanish at infinity, equipped with the supremum norm. If $X$ is the scalar field, we denote $C_0(K, X)$ simply by $C_0(K)$. We prove that for locally compact Hausdorff spaces $K$ and $L$ and for a Banach space $X$ containing no copy of $c_0$, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$, then either $K$ is finite or $|K|\leq |L|$. As a consequence, if there is an isomorphic embedding of $C_0(K)$ into $C_0(L,X)$ where $X$ contains no copy of $c_0$ and $L$ is scattered, then $K$ must be scattered.

Authors

  • Leandro CandidoInstituto de Ciência e Tecnologia
    Universidade Federal de São Paulo
    Campus São José dos Campos – Parque Tecnológico
    Avenida Cesare Monsueto Giulio Lattes, 1211
    12231-280 São José dos Campos – SP, Brazil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image