Defining complete and observable chaos

Tom 64 / 1996

Víctor López Annales Polonici Mathematici 64 (1996), 139-151 DOI: 10.4064/ap-64-2-139-151


For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which $lim inf_{n→∞} |f^n(x) - f^n(y)| = 0$ and $lim sup_{n→∞} |f^n(x) - f^n(y)| > 0$. We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions of "complete" and "observable" chaos.


  • Víctor López

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek