Continuous linear functionals on the space of Borel vector measures

Tom 93 / 2008

Pola Siwek Annales Polonici Mathematici 93 (2008), 199-209 MSC: Primary 46E27, 28B05; Secondary 46G10. DOI: 10.4064/ap93-3-1


We study properties of the space $\mathcal M$ of Borel vector measures on a compact metric space $X$, taking values in a Banach space $E$. The space $\mathcal M$ is equipped with the Fortet–Mourier norm $\|\cdot \|_{\mathcal F}$ and the semivariation norm $\|\cdot \|(X)$. The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space $(\mathcal M, \|\cdot \|_{\mathcal F})^*$ is contained in but not equal to the space $(\mathcal M,\|\cdot \|(X))^*$. We obtain a representation of the continuous functionals on $\mathcal M$ in some particular cases.


  • Pola SiwekInstitute of Mathematics
    University of Silesia
    Bankowa 14
    40-007 Katowice, Poland

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek