JEDNOSTKA NAUKOWA KATEGORII A+

Polynomials with exponents in compact convex sets and associated weighted extremal functions – The Bernstein–Walsh–Siciak theorem

Benedikt Steinar Magnússon, Ragnar Sigurðsson, Bergur Snorrason Annales Polonici Mathematici MSC: Primary 32U35; Secondary 32A08, 32A15, 32U15, 32W05 DOI: 10.4064/ap241204-30-7 Opublikowany online: 6 August 2025

Streszczenie

We generalize the Bernstein–Walsh–Siciak theorem on polynomial approximation in $\mathbb C^n$ to the case where the polynomial ring ${\mathcal P}(\mathbb C^n)$ is replaced by a subring ${\mathcal P}^S(\mathbb C^n)$ consisting of all polynomials with exponents restricted to sets $mS$, where $S$ is a compact convex subset of $\mathbb R^n_+$ with $0\in S$ and $m=0,1,2,\dots,$ and uniform estimates of error in the approximation are replaced by weighted uniform estimates with respect to an admissible weight function.

Autorzy

  • Benedikt Steinar MagnússonScience Institute
    University of Iceland
    IS-107 Reykjavík, Iceland
    e-mail
  • Ragnar SigurðssonScience Institute
    University of Iceland
    IS-107 Reykjavík, Iceland
    e-mail
  • Bergur SnorrasonScience Institute
    University of Iceland
    IS-107 Reykjavík, Iceland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek