JEDNOSTKA NAUKOWA KATEGORII A+

On Milnor–Orlik’s theorem and admissible simultaneous good resolutions

Christophe Eyral, Mutsuo Oka Annales Polonici Mathematici MSC: Primary 14B05; Secondary 32S05, 32S25, 32S45 DOI: 10.4064/ap250326-15-7 Opublikowany online: 12 August 2025

Streszczenie

Let $f$ be a (possibly Newton degenerate) weighted homogeneous polynomial defining an isolated surface singularity at the origin of $\mathbb {C}^3$, and let $\{f_s\}$ be a generic deformation of its coefficients such that $f_s$ is Newton non-degenerate for $s\not =0$. We show that there exists an “admissible” simultaneous good resolution of the family of functions $f_s$ for all small $s$, including $s=0$ which corresponds to the (possibly Newton degenerate) function $f$. As an application, we give a new geometrical proof of a weak version of the Milnor–Orlik theorem that asserts that the monodromy zeta-function of $f$ (and hence its Milnor number) is completely determined by its weight, its weighted degree and its Newton boundary.

Autorzy

  • Christophe EyralInstitute of Mathematics
    Polish Academy of Sciences
    00-656 Warszawa, Poland
    e-mail
  • Mutsuo OkaProfessor Emeritus
    Tokyo Institute of Technology
    152-8551 Tokyo, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek