Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Boundary eigencurve problems involving the biharmonic operator

Tom 41 / 2014

Omar Chakrone, Najib Tsouli, Mostafa Rahmani, Omar Darhouche Applicationes Mathematicae 41 (2014), 267-275 MSC: Primary 35J35; Secondary 35J40. DOI: 10.4064/am41-2-14

Streszczenie

The aim of this paper is to study the spectrum of the fourth order eigenvalue boundary value problem $$\left \{ \begin{array}{@{}l@{}} \varDelta^{2}u=\alpha u+\beta\varDelta u \quad \hbox{in}\ \varOmega, \\ u=\varDelta u=0 \quad \hbox{on}\ \partial\varOmega. \end{array} \right.$$ where $(\alpha,\beta)\in\mathbb{R}^{2}$. We prove the existence of a first nontrivial curve of this spectrum and we give its variational characterization. Moreover we prove some properties of this curve, e.g., continuity, convexity, and asymptotic behavior. As an application, we study the non-resonance of solutions below the first principal eigencurve of the biharmonic problem \begin{equation*} \left\{ \begin{array}{@{}l@{}} \varDelta^2 u=f(u,x)+\beta \varDelta u+h \quad \mbox{in $\varOmega$},\\ \varDelta u=u=0\quad \mbox{on $\partial\varOmega$}, \end{array} \right. \end{equation*} where $f :\varOmega\times\mathbb{R}\rightarrow\mathbb{R}$ is a Carathéodory function and $h$ is a given function in $L^{2}(\varOmega)$.

Autorzy

  • Omar ChakroneDepartment of Mathematics
    University Mohamed I
    P.O. Box 717
    Oujda 60000, Morocco
    e-mail
  • Najib TsouliDepartment of Mathematics
    University Mohamed I
    P.O. Box 717
    Oujda 60000, Morocco
    e-mail
  • Mostafa RahmaniDepartment of Mathematics
    University Mohamed I
    P.O. Box 717
    Oujda 60000, Morocco
    e-mail
  • Omar DarhoucheDepartment of Mathematics
    University Mohamed I
    P.O. Box 717
    Oujda 60000, Morocco
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek