Generalized $g$-iterated fractional approximations by sublinear operators

Tom 47 / 2020

George A. Anastassiou Applicationes Mathematicae 47 (2020), 273-291 MSC: 26A33, 41A17, 41A25, 41A36. DOI: 10.4064/am2400-1-2020 Opublikowany online: 2 November 2020

Streszczenie

We study approximation of functions by sublinear positive operators with applications to several max-product operators under generalized $g$-iterated fractional differentiability. Our work is based on our generalized $g$-iterated fractional results about positive sublinear operators. We produce Jackson type inequalities under iterated initial conditions. Our approach is quantitative by deriving inequalities with right hand sides involving the modulus of continuity of a generalized $g$-iterated fractional derivative of the function being approximated.

Autorzy

  • George A. AnastassiouDepartment of Mathematical Sciences
    University of Memphis
    Memphis, TN 38152, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek