JEDNOSTKA NAUKOWA KATEGORII A+

Description of noncommutative symplectic manifolds for self-injective Nakayama algebras

Zygmunt Pogorzały Bulletin Polish Acad. Sci. Math. MSC: Primary 14A22; Secondary 58B34, 83C65 DOI: 10.4064/ba250630-20-1 Opublikowany online: 29 January 2026

Streszczenie

We determine all possible exact noncommutative symplectic structures for certain path algebras with relations. These algebras are the path algebras of a cyclic quiver with $r+1$ arrows quotiented by the ideal generated by the paths of length $l$. The main result is that there are exact noncommutative symplectic structures only when $l=s(r+1)+1$ with $s\geq 1$. In this case a description of the open subset of one-forms $z$ such that $dz$ is a non-degenerate symplectic form is given, by reducing it to the case $s=1$.

Autorzy

  • Zygmunt PogorzałyFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    87-100 Toruń, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek