JEDNOSTKA NAUKOWA KATEGORII A+

On the closedness of ergodic measures in a characteristic class

Sejal Babel, Martha Łącka Colloquium Mathematicum MSC: Primary 37A05 DOI: 10.4064/cm9572-4-2025 Opublikowany online: 4 May 2025

Streszczenie

We endow the set of all invariant measures of a topological dynamical system with a metric $\bar{\rho }$, which induces a topology stronger than the weak$^*$ topology. Then, we study the closedness of ergodic measures within a characteristic class under this metric. Specifically, we show that if a sequence of generic points associated with ergodic measures from a fixed characteristic class converges in the Besicovitch pseudometric, then the limit point is generic for an ergodic measure in the same class. This implies that the set of ergodic measures belonging to a fixed characteristic class is closed in $\bar{\rho }$ (by a result of Babel, Can, Kwietniak, and Oprocha (2025)).

Autorzy

  • Sejal BabelFaculty of Mathematics and Computer Science
    Jagiellonian University in Kraków
    30-348 Kraków, Poland
    and
    Doctoral School of Exact and Natural Sciences
    Jagiellonian University in Kraków
    30-348 Kraków, Poland
    e-mail
  • Martha ŁąckaFaculty of Mathematics and Computer Science
    Jagiellonian University in Kraków
    30-348 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek