JEDNOSTKA NAUKOWA KATEGORII A+

On relationships between reversibility and amenability of $\mathrm{WAP}(S)$

Khadime Salame Colloquium Mathematicum MSC: Primary 43A07; Secondary 43A60, 47H10, 47H20 DOI: 10.4064/cm9579-5-2025 Opublikowany online: 9 September 2025

Streszczenie

It is well-known that whenever $S$ is a discrete left reversible semigroup or a topological group, then the Banach algebra $\mathrm {WAP}(S)$ of weakly almost periodic functions on $S$ has a left invariant mean. Whether this is true for semitopological semigroups is still unknown. By introducing a certain fixed point property, we are able to provide a positive answer for separable semitopological semigroups (or more generally, for strongly left reversible semitopological semigroups) and for all semitopological left groups. Moreover, we prove that whenever $S$ is a semitopological left group, for any right ideal of type $sS$ $(s\in S)$ the space $\mathrm {WAP}(sS)$ has a left invariant mean, extending a well-known property of topological groups.

Autorzy

  • Khadime SalameDépartement de Mathématiques
    UFR Sciences et Technologies
    Université Iba Der Thiam de Thies
    BP 967 Thies, Senegal
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek