JEDNOSTKA NAUKOWA KATEGORII A+

A condition for commutativity in a domain

Abderrahim Makki Naciri Colloquium Mathematicum MSC: Primary 16U10 DOI: 10.4064/cm9592-8-2025 Opublikowany online: 21 September 2025

Streszczenie

Let $R$ be a unitary ring without zero divisors. We prove that if $R$ contains an element with finite centralizer, then $R$ must be commutative. Furthermore, employing Zorn’s Lemma (which is equivalent to the Axiom of Choice), we demonstrate that in the noncommutative case, every element of $R$ is contained in an infinite commutative subring.

Autorzy

  • Abderrahim Makki NaciriLIBMA Laboratory
    Department of Mathematics
    Faculty of Science Semlalia
    Cadi Ayyad University
    40000 Marrakesh, Morocco
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek