JEDNOSTKA NAUKOWA KATEGORII A+

On the irrationality of certain super-polynomially decaying series

Tonći Crmarić, Vjekoslav Kovač Colloquium Mathematicum MSC: Primary 11J72; Secondary 40A05 DOI: 10.4064/cm9628-5-2025 Opublikowany online: 22 September 2025

Streszczenie

We give a negative answer to the question by Paul Erdős and Ronald Graham on whether the series $$ \sum _{n=1}^{\infty} \frac{1}{(n+1)(n+2)\cdots (n+f(n))}$$ has irrational sum whenever $(f(n))_{n=1}^{\infty }$ is a sequence of positive integers converging to infinity. To achieve this, we generalize a classical observation of Sōichi Kakeya on the set of all subsums of a convergent positive series. We also discuss why the same problem is likely difficult when $(f(n))_{n=1}^{\infty }$ is additionally assumed to be increasing.

Autorzy

  • Tonći CrmarićDepartment of Mathematics
    Faculty of Science
    University of Split
    21000 Split, Croatia
    e-mail
  • Vjekoslav KovačDepartment of Mathematics
    Faculty of Science
    University of Zagreb
    10000 Zagreb, Croatia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek