JEDNOSTKA NAUKOWA KATEGORII A+

On the factorable strong $p$-nuclearity of Bloch maps

Khaled Hamidi, Antonio Jiménez-Vargas, Abdelhamid Tallab Colloquium Mathematicum MSC: Primary 30H30; Secondary 40H05, 46A11, 47B10 DOI: 10.4064/cm9639-10-2025 Opublikowany online: 17 November 2025

Streszczenie

We introduce and study the concept of factorable strongly $p$-nuclear Bloch maps, a novel class of mappings in the category of Bloch functions. We provide several characterizations of these maps, including a Pietsch-type domination theorem and connections to $p$-nuclear linear operators via their linearization and transposition. Key properties such as Möbius invariance and duality by applying the theory on tensor products are established. We also investigate the injective Banach ideal structure of these maps and their Bloch weak compactness properties. The results extend known theory on Bloch mappings, offering new insights into their interplay.

Autorzy

  • Khaled HamidiLaboratory of Functional Analysis and Geometry of Spaces
    Faculty of Mathematics and Computer Science
    University of M’sila
    M’sila 28000, Algeria
    e-mail
  • Antonio Jiménez-VargasDepartamento de Matemáticas
    Universidad de Almería
    04120 Almería, Spain
    e-mail
  • Abdelhamid TallabLaboratory of Functional Analysis and Geometry of Spaces
    Faculty of Mathematics and Computer Science
    University of M’sila
    M’sila 28000, Algeria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek