Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Artykuły Online First

Colloquium Mathematicum

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Classifying homogeneous cellular ordinal balleans up to coarse equivalence

Tom 149 / 2017

Colloquium Mathematicum 149 (2017), 211-224 MSC: Primary 54E35; Secondary 51F99. DOI: 10.4064/cm6785-4-2017 Opublikowany online: 29 May 2017

Streszczenie

For every ballean $X$, we introduce two cardinal characteristics $\mathrm {cov}^\flat (X)$ and $\mathrm {cov}^\sharp (X)$ describing the capacity of balls in $X$. We observe that these characteristics are invariant under coarse equivalence and prove that two cellular ordinal balleans $X,Y$ are coarsely equivalent if $\mathrm {cof}(X)=\mathrm {cof}(Y)$ and $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)=\mathrm {cov}^\flat (Y)=\mathrm {cov}^\sharp (Y)$. This implies that a cellular ordinal ballean $X$ is homogeneous if and only if $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)$. Moreover, two homogeneous cellular ordinal balleans $X,Y$ are coarsely equivalent if and only if $\mathrm {cof}(X)=\mathrm {cof}(Y)$ and $\mathrm {cov}^\sharp (X)=\mathrm {cov}^\sharp (Y)$ if and only if each of these balleans coarsely embeds into the other. This means that the coarse structure of a homogeneous cellular ordinal ballean $X$ is fully determined by the values of $\mathrm {cof}(X)$ and $\mathrm {cov}^\sharp (X)$. For every limit ordinal $\gamma$, we define a ballean $2^{ \lt \gamma }$ (called the Cantor macro-cube) that, in the class of cellular ordinal balleans of cofinality $\mathrm {cf}(\gamma )$, plays a role analogous to the role of the Cantor cube $2^{\kappa }$ in the class of zero-dimensional compact Hausdorff spaces. We also characterize balleans which are coarsely equivalent to $2^{ \lt \gamma }$. This can be considered as an asymptotic analogue of Brouwer’s characterization of the Cantor cube $2^\omega$.

Autorzy

• T. BanakhFaculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
Lviv, Ukraine
and
Institute of Mathematics
Jan Kochanowski University
Kielce, Poland
e-mail
• I. ProtasovFaculty of Cybernetics
Taras Shevchenko National University of Kyiv
Kyiv, Ukraine
e-mail
• D. RepovšFaculty of Education
and Faculty of Mathematics and Physics
University of Ljubljana
Kardeljeva Pl. 16
Ljubljana, Slovenia 1000
e-mail
• S. SlobodianiukFaculty of Cybernetics
Taras Shevchenko National University of Kyiv
Kyiv, Ukraine
e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka Odśwież obrazek