# Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Artykuły Online First

## Colloquium Mathematicum

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## Classifying homogeneous cellular ordinal balleans up to coarse equivalence

### Tom 149 / 2017

Colloquium Mathematicum 149 (2017), 211-224 MSC: Primary 54E35; Secondary 51F99. DOI: 10.4064/cm6785-4-2017 Opublikowany online: 29 May 2017

#### Streszczenie

For every ballean $X$, we introduce two cardinal characteristics $\mathrm {cov}^\flat (X)$ and $\mathrm {cov}^\sharp (X)$ describing the capacity of balls in $X$. We observe that these characteristics are invariant under coarse equivalence and prove that two cellular ordinal balleans $X,Y$ are coarsely equivalent if $\mathrm {cof}(X)=\mathrm {cof}(Y)$ and $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)=\mathrm {cov}^\flat (Y)=\mathrm {cov}^\sharp (Y)$. This implies that a cellular ordinal ballean $X$ is homogeneous if and only if $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)$. Moreover, two homogeneous cellular ordinal balleans $X,Y$ are coarsely equivalent if and only if $\mathrm {cof}(X)=\mathrm {cof}(Y)$ and $\mathrm {cov}^\sharp (X)=\mathrm {cov}^\sharp (Y)$ if and only if each of these balleans coarsely embeds into the other. This means that the coarse structure of a homogeneous cellular ordinal ballean $X$ is fully determined by the values of $\mathrm {cof}(X)$ and $\mathrm {cov}^\sharp (X)$. For every limit ordinal $\gamma$, we define a ballean $2^{ \lt \gamma }$ (called the Cantor macro-cube) that, in the class of cellular ordinal balleans of cofinality $\mathrm {cf}(\gamma )$, plays a role analogous to the role of the Cantor cube $2^{\kappa }$ in the class of zero-dimensional compact Hausdorff spaces. We also characterize balleans which are coarsely equivalent to $2^{ \lt \gamma }$. This can be considered as an asymptotic analogue of Brouwer’s characterization of the Cantor cube $2^\omega$.

#### Autorzy

• T. BanakhFaculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
Lviv, Ukraine
and
Institute of Mathematics
Jan Kochanowski University
Kielce, Poland
e-mail
• I. ProtasovFaculty of Cybernetics
Taras Shevchenko National University of Kyiv
Kyiv, Ukraine
e-mail
• D. RepovšFaculty of Education
and Faculty of Mathematics and Physics
University of Ljubljana
Kardeljeva Pl. 16
Ljubljana, Slovenia 1000
e-mail
• S. SlobodianiukFaculty of Cybernetics
Taras Shevchenko National University of Kyiv
Kyiv, Ukraine
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek