A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Colloquium Mathematicum / All issues

## Region of variability for spiral-like functions with respect to a boundary point

### Volume 116 / 2009

Colloquium Mathematicum 116 (2009), 31-46 MSC: Primary 30C45. DOI: 10.4064/cm116-1-3

#### Abstract

For $\mu\in\mathbb C$ such that ${\rm Re\,}\mu>0$ let ${\mathcal F}_{\mu}$ denote the class of all non-vanishing analytic functions $f$ in the unit disk $\mathbb{D}$ with $f(0)=1$ and $${\rm Re} \bigg(\frac{2\pi}{\mu}\, \frac{zf'(z)}{f(z)}+ \frac{1+z}{1-z}\bigg ) >0 \quad\ \hbox{in {\mathbb D}}.$$ For any fixed $z_0$ in the unit disk, $a\in\mathbb{C}$ with $|a|\leq 1$ and $\lambda\in\overline{\mathbb{D}}$, we shall determine the region of variability $V(z_0,\lambda)$ for $\log f(z_0)$ when $f$ ranges over the class \begin{multline*} \mathcal{F}_{\mu}(\lambda) = \biggl\{ f\in{\mathcal F}_{\mu} : f'(0)=\frac{\mu}{\pi}(\lambda-1) \hbox{ and}\\ f' '(0)=\frac{\mu}{\pi}\biggl(a(1-|\lambda|^2)+\frac{\mu}{\pi} (\lambda-1)^2-(1-{\lambda}^2)\biggr)\biggr\}.\end{multline*} In the final section we graphically illustrate the region of variability for several sets of parameters.

#### Authors

• S. PonnusamyDepartment of Mathematics
Chennai 600 036, India
e-mail
• A. VasudevaraoDepartment of Mathematics
Chennai 600 036, India
e-mail
• M. VuorinenDepartment of Mathematics
FIN-20014 University of Turku, Finland
e-mail

## Search for IMPAN publications

Query phrase too short. Type at least 4 characters.