A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Colloquium Mathematicum / All issues

## Cyclic mean-value inequalities for the gamma function

### Volume 132 / 2013

Colloquium Mathematicum 132 (2013), 27-34 MSC: 26D07, 33B15. DOI: 10.4064/cm132-1-3

#### Abstract

We present two cyclic inequalities involving the classical $\varGamma$-function of Euler and the (unweighted) power mean $$M_t(a,b)=\left(\frac{a^t+b^t}{2}\right)^{1/t} \quad (t\neq 0), \quad\ M_0(a,b)=\sqrt{ab} \quad (a,b>0).$$

(I) Let $2\leq n\in\mathbb{N}$ and $r\in\mathbb{R}$. The inequality $$\prod_{j=1}^n \varGamma\left(\frac{1}{1+M_r(x_j,x_{j+1})}\right) \leq \prod_{j=1}^n \varGamma\left(\frac{1}{1+x_j}\right) \quad\ (x_{n+1}=x_1)$$ holds for all $x_j>0$ $(j=1,\ldots ,n)$ if and only if $r\leq 0$. (II) Let $2\leq n \in\mathbb{N}$ and $s\in \mathbb{R}$. The inequality $$\prod_{j=1}^n \varGamma\left(\frac{1}{1+x_j}\right) \leq \prod_{j=1}^n \varGamma\left(\frac{1}{1+M_s(x_j,x_{j+1})} \right) \quad\ (x_{n+1}=x_1)$$ is valid for all $x_j>0$ $(j=1,\ldots,n)$ if and only if $$s\geq \max_{0 < x < 1} P(x)=1.0309\ldots .$$ Here, $$P(x)=2x-1+x(x-1)\frac{\psi'(x)}{\psi(x)} \quad\mbox{and} \quad{\psi=\varGamma'/\varGamma}.$$

#### Authors

• Horst AlzerMorsbacher Str. 10
D-51545 Waldbröl, Germany
e-mail

## Search for IMPAN publications

Query phrase too short. Type at least 4 characters.