The Heyde theorem on $\bf a$-adic solenoids

Volume 132 / 2013

Margaryta Myronyuk Colloquium Mathematicum 132 (2013), 195-210 MSC: Primary 60B15; Secondary 62E10. DOI: 10.4064/cm132-2-3


We prove the following analogue of the Heyde theorem for $\bf a$-adic solenoids. Let $ \xi_1$, $\xi_2$ be independent random variables with values in an ${\bf a}$-adic solenoid $ \varSigma_{\bf a}$ and with distributions $\mu_1$, $\mu_2$. Let $\alpha_j, \beta_j$ be topological automorphisms of $\varSigma_{\bf a}$ such that $\beta_1\alpha^{-1}_1 \pm \beta_2\alpha^{-1}_2$ are topological automorphisms of $\varSigma_{\bf a}$ too. Assuming that the conditional distribution of the linear form $L_2=\beta_1\xi_1 + \beta_2\xi_2$ given $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ is symmetric, we describe the possible distributions $\mu_1$, $\mu_2$.


  • Margaryta MyronyukB. Verkin Institute for Low Temperature Physics and Engineering
    National Academy of Sciences of Ukraine
    47, Lenin Ave.
    Kharkov, 61103, Ukraine

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image