A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Some congruences for Schröder type polynomials

Volume 146 / 2017

Ji-Cai Liu Colloquium Mathematicum 146 (2017), 187-195 MSC: Primary 11A07; Secondary 05A10. DOI: 10.4064/cm7004-8-2016 Published online: 23 September 2016

Abstract

The $n$th Schröder number is given by $S_n=\sum_{k=0}^{n}{n\choose k}{n+k\choose k}\frac{1}{k+1}.$ Motivated by these numbers, for any positive integer $\alpha$ we introduce the polynomials \begin{equation*} S_n^{(\alpha)}(x)=\sum_{k=0}^{n}\left({n\atop k}\right)^{\alpha}\left({n+k\atop k}\right)^{\alpha}\frac{x^k}{(k+1)^{\alpha}}. \end{equation*} We prove that for any positive integers $r$, $\alpha$, odd prime $p$ and any integer $m$ not divisible by $p$, and for $\varepsilon=\pm 1$, \begin{align*} &\sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha-1)}(m)^r\equiv 0 \pmod{p},\\ &\sum_{k=1}^{p-1}{\varepsilon}^k(2k+1)S_k^{(2\alpha)}(m)^r\equiv -2^r \pmod{p}. \end{align*}

Authors

  • Ji-Cai LiuDepartment of Mathematics
    Shanghai Key Laboratory of PMMP
    East China Normal University
    500 Dongchuan Road
    Shanghai 200241, People’s Republic of China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image