PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The optimal constants in Khintchine’s inequality for the case $2 < p < 3$

Volume 147 / 2017

Olaf Mordhorst Colloquium Mathematicum 147 (2017), 203-216 MSC: Primary 26D15; Secondary 60E15. DOI: 10.4064/cm6861-7-2016 Published online: 30 December 2016


A main step in Haagerup’s proof for the optimal constants in Khintchine’s inequality is to show integral inequalities of the type $\int (g^s-f^s) \,d \mu \geq 0$. In 2000, F. L. Nazarov and A. N. Podkorytov made Haagerup’s proof much more clear for the case $0 \lt p \lt 2$ by using a lemma on distribution functions. In this article we treat the case $2 \lt p \lt 3$ with their technique.


  • Olaf MordhorstMathematisches Seminar
    Christian-Albrechts-Universität zu Kiel
    Ludewig-Meyn-Str. 4
    D-24118 Kiel, Germany

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image