PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

A problem of G. Q. Wang on the Davenport constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$

Volume 148 / 2017

Lizhen Zhang, Haoli Wang, Yongke Qu Colloquium Mathematicum 148 (2017), 123-130 MSC: Primary 11B75; Secondary 20M25. DOI: 10.4064/cm6707-6-2016 Published online: 24 February 2017


Given a finite commutative semigroup $\mathcal{S}$ (written multiplicatively), denote by ${\rm D}(\mathcal{S})$ the Davenport constant of $\mathcal{S}$, the least positive integer $\ell$ such that for any $x_1,\ldots,x_{\ell}\in \mathcal{S}$ there exists a set $I\subsetneq [1,\ell]$ for which $\prod_{i\in I} x_i=\prod_{i=1}^{\ell} x_i$, the equality being interpreted in the conditional unitization of $\mathcal{S}$ to make sense of the left-hand side also in the case when $I=\emptyset$ and $\mathcal{S}$ is not unitary.

Then, let $R$ be the quotient ring of $\mathbb{F}_2[x]$ by the principal ideal generated by a nonconstant polynomial $f\in \mathbb{F}_2[x]$. Moreover, let $\mathcal{S}_R$ be the multiplicative semigroup of the cosets in $R$, and ${\rm U}(\mathcal{S}_R)$ the group of units of $\mathcal{S}_R$.

We prove that $${\rm D}({\rm U}(\mathcal{S}_R))\leq {\rm D}(\mathcal{S}_R)\leq {\rm D}({\rm U}(\mathcal{S}_R))+\delta_f,$$ where $$ \delta_f=\begin{cases}0 &\textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}), f)=1_{\mathbb F_{2}}$,}\\ 1 & \textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}), f)\in \{x, x+1_{\mathbb{F}_2}\}$,}\\ 2 & \textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}),f)=x*(x+1_{\mathbb{F}_2}) $.}\\ \end{cases} $$ This gives a partial answer to an open problem of G. Q. Wang.


  • Lizhen ZhangShanghai Institute
    of Applied Mathematics and Mechanics
    Shanghai University
    Shanghai, 200072, P.R. China
    Department of Mathematics
    Tianjin Polytechnic University
    Tianjin, 300387, P.R. China
  • Haoli WangCollege of Computer
    and Information Engineering
    Tianjin Normal University
    Tianjin, 300387, P.R. China
  • Yongke QuDepartment of Mathematics
    Luoyang Normal University
    Luoyang, 471022, P.R. China

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image