A+ CATEGORY SCIENTIFIC UNIT

On the ring of constants for derivations of power series rings in two variables

Volume 87 / 2001

Leonid Makar-Limanov, Andrzej Nowicki Colloquium Mathematicum 87 (2001), 195-200 MSC: Primary 12H05; Secondary 13F25. DOI: 10.4064/cm87-2-5

Abstract

Let $k[[x,y]]$ be the formal power series ring in two variables over a field $k$ of characteristic zero and let $d$ be a nonzero derivation of $k[[x,y]]$. We prove that if $\mathop{\rm Ker}\nolimits (d)\neq k$ then $\mathop{\rm Ker}\nolimits (d) =\mathop{\rm Ker}\nolimits (\delta)$, where $\delta$ is a jacobian derivation of $k[[x,y]]$. Moreover, $\mathop{\rm Ker}\nolimits (d)$ is of the form $k[[h]]$ for some $h\in k[[x,y]]$.

Authors

  • Leonid Makar-LimanovDepartment of Mathematics
    and Computer Science
    Bar-Ilan University
    52900 Ramat-Gan, Israel
    and
    Department of Mathematics
    Wayne State University
    Detroit, MI 48202, U.S.A.
    e-mail
  • Andrzej NowickiFaculty of Mathematics
    and Computer Science
    N. Copernicus University
    87-100 Torun, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image