A+ CATEGORY SCIENTIFIC UNIT

Sur la somme des quotients partiels du développement en fraction continue

Volume 89 / 2001

D. Barbolosi, C. Faivre Colloquium Mathematicum 89 (2001), 159-167 MSC: Primary 11K50. DOI: 10.4064/cm89-2-1

Abstract

Let $[0;a_{1}(x),a_{2}(x),\ldots ]$ be the regular continued fraction expansion of an irrational $x\in[ 0,1]$. We prove mainly that, for $\alpha >0$, $\beta \geq 0$ and for almost all $x\in [0,1]$, $$ \lim _{n\to \infty }\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log n}= \cases{ {\alpha }/\!\log 2&{\rm if}\ \alpha <1\ {\rm and}\ \beta \geq 0,\cr {1}/\!\log 2&{\rm if}\ \alpha =1\ {\rm and}\ \beta<1,\cr} $$ and, if $\alpha >1$ or $\alpha =1\ {\rm and }\ \beta >1$, $$\eqalign{ &\liminf _{n\to \infty }\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log n}=\frac{1}{\log 2},\cr &\limsup _{n\to \infty}\frac{a_{1}^{n}(x)+\ldots +a_{n}^{n}(x)}{n\log n} =\infty,\cr}$$ where $a_{i}^{n}(x)=a_{i}(x)$ if $a_{i}(x)\leq n^{\alpha }\log ^{\beta }n$ and $a_{i}^{n}(x)=0$ otherwise, for all $i\in \{ 1,\ldots ,n\}$.

Authors

  • D. BarbolosiFaculté des Sciences
    et Techniques de St. Jerôme
    Service de Mathématiques
    Case 322
    Avenue Escadrille Normandie-Niemen
    13397 Marseille Cedex 20, France
    e-mail
  • C. FaivreCentre de Mathématiques et Informatique
    de l'Université de Provence
    39, rue Joliot Curie
    13453 Marseille Cedex 13, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image