A transvection decomposition in ${\rm GL}(n,2)$

Volume 94 / 2002

Clorinda De Vivo, Claudia Metelli Colloquium Mathematicum 94 (2002), 51-60 MSC: 15Axx, 08Axx, 05Bxx, 06Bxx, 20Hxx. DOI: 10.4064/cm94-1-4

Abstract

An algorithm is given to decompose an automorphism of a finite vector space over ${\mathbb Z}_{2}$ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ${\mathbb Z}_{2}$-representations generated by a redundant base, this is a decomposition into base changes.

Authors

  • Clorinda De VivoDipartimento di Matematica e Applicazioni
    Università Federico II di Napoli
    80126 Napoli, Italy
    e-mail
  • Claudia MetelliDipartimento di Matematica e Applicazioni
    Università Federico II di Napoli
    80126 Napoli, Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image