Lifts for semigroups of monomorphisms of an independence algebra

Volume 97 / 2003

João Araújo Colloquium Mathematicum 97 (2003), 277-284 MSC: 20M10, 20M20. DOI: 10.4064/cm97-2-11


For a universal algebra ${\cal A}$, let $\mathop{\rm End}\nolimits ({\cal A} )$ and $\mathop{\rm Aut}\nolimits ({\cal A} )$ denote, respectively, the endomorphism monoid and the automorphism group of ${\cal A}$. Let $S$ be a semigroup and let $T$ be a characteristic subsemigroup of $S$. We say that $\phi \in \mathop{\rm Aut}\nolimits (S)$ is a lift for $\psi\in \mathop{\rm Aut}\nolimits (T)$ if $\phi|T=\psi$. For $\psi \in \mathop{\rm Aut}\nolimits (T)$ we denote by $L(\psi)$ the set of lifts of $\psi$, that is, $ L(\psi )= \{\phi \in \mathop{\rm Aut}\nolimits (S) \mid \phi|T=\psi\}. $ Let ${\cal A}$ be an independence algebra of infinite rank and let $S$ be a monoid of monomorphisms such that $G=\mathop{\rm Aut}\nolimits ({\cal A} )\leq S \leq \mathop{\rm End}\nolimits ({\cal A} )$. In  [2] it is proved that if ${\cal A}$ is a set (that is, an algebra without operations), then $|L(\phi)|= 1$. The analogous result for vector spaces does not hold. Thus the natural question is: Characterize the independence algebras in which $|L(\phi)|=1$. The aim of this note is to answer this question.


  • João AraújoUniversidade Aberta
    R. Escola Politécnica, 147
    1269-001 Lisboa, Portugal
    Centro de Álgebra
    Universidade de Lisboa
    Av. Gama Pinto, 2
    1649-003 Lisboa, Portugal

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image