Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

A lattice of finite-type invariants of virtual knots

Tom 100 / 2014

Micah W. Chrisman Banach Center Publications 100 (2014), 27-49 MSC: 57M25,57M27. DOI: 10.4064/bc100-0-2

Streszczenie

We construct an infinite commutative lattice of groups whose dual spaces give Kauffman finite-type invariants of long virtual knots. The lattice is based “horizontally” upon the Polyak algebra and extended “vertically” using Manturov's functorial map $f$. For each $n$, the $n$-th vertical line in the lattice contains an infinite-dimensional subspace of Kauffman finite-type invariants of degree $n$. Moreover, the lattice contains infinitely many inequivalent extensions of the Conway polynomial to long virtual knots, all of which satisfy the same skein relation. Bounds for the rank of each group in the lattice are obtained.

Autorzy

  • Micah W. ChrismanDepartment of Mathematics
    Monmouth University
    West Long Branch, NJ 07764, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek