Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On Noether and strict stability, Hilbert exponent, and relative Nullstellensatz

Tom 107 / 2013

Chia-chi Tung Annales Polonici Mathematici 107 (2013), 1-28 MSC: Primary 32C15; Secondary 14C17, 32C25. DOI: 10.4064/ap107-1-1

Streszczenie

Conditions characterizing the membership of the ideal of a subvariety ${\mathfrak S}$ arising from (effective) divisors in a product complex space $Y \times X$ are given. For the algebra ${\mathcal O}_Y [V]$ of relative regular functions on an algebraic variety $V$, the strict stability is proved, in the case where $Y$ is a normal space, and the Noether stability is established under a weakened condition. As a consequence (for both general and complete intersections) a global Nullstellensatz is derived for divisors in $Y\times {\mathbb C}^N$, respectively, $Y\times {\mathbb P}^N ({\mathbb C})$. Also obtained are a principal ideal theorem for relative divisors, a generalization of the Gauss decomposition rule, and characterizations of solid pseudospherical harmonics on a semi-Riemann domain. A result towards a more general case is as follows: Let ${\mathfrak D}_j$, $1 \le j\le p$, be principal divisors in $X$ associated to the components of a $q$-weakly normal map $g = (g_1,\ldots,g_p) : X \to {\mathbb C}^p$, and $S := \bigcap {\mathfrak S}_{|{\mathfrak D}_j|}$. Then for any proper slicing $(\varphi,g,D)$ of $\{{\mathfrak D}_j\}_{1\le j\le p}$ (where $D\subset X$ is a relatively compact open subset), there exists an explicitly determined Hilbert exponent ${\mathfrak h}_{_{{\mathfrak D}_1 \cdots {\mathfrak D}_p,D}}$ for the ideal of the subvariety ${\mathfrak S} = Y\times (S\cap D)$.

Autorzy

  • Chia-chi TungDepartment of Mathematics and Statistics
    Minnesota State University, Mankato
    Mankato, MN 56001, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek