The fixed points of holomorphic maps on a convex domain

Tom 56 / 1992

Thai Do Annales Polonici Mathematici 56 (1992), 143-148 DOI: 10.4064/ap-56-2-143-148

Streszczenie

We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in $ℂ^n$ then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.

Autorzy

  • Thai Do

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek