A note on LaSalle's problems

Tom 76 / 2001

Anna Cima, Armengol Gasull, Francesc Mañosas Annales Polonici Mathematici 76 (2001), 33-46 MSC: 58F10, 39A11. DOI: 10.4064/ap76-1-4

Streszczenie

In LaSalle's book “The Stability of Dynamical Systems", the author gives four conditions which imply that the origin of a discrete dynamical system defined on $ {\mathbb R}$ is a global attractor, and proposes to study the natural extensions of these conditions in $ {\mathbb R}^n.$ Although some partial results are obtained in previous papers, as far as we know, the problem is not completely settled. In this work we first study the four conditions and prove that just one of them implies that the origin is a global attractor in $ {\mathbb R}^n$ for polynomial maps. Then we note that two of these conditions have a natural extension to ordinary differential equations. One of them gives rise to the well known Markus–Yamabe assumptions. We study the other condition and we prove that it does not imply that the origin is a global attractor.

Autorzy

  • Anna CimaDept. de Matemàtiques
    Universitat Autònoma de Barcelona
    Edifici Cc, 08193 Bellaterra, Barcelona, Spain
    e-mail
  • Armengol GasullDept. de Matemàtiques
    Universitat Autònoma de Barcelona
    Edifici Cc, 08193 Bellaterra, Barcelona, Spain
    e-mail
  • Francesc MañosasDept. de Matemàtiques
    Universitat Autònoma de Barcelona
    Edifici Cc, 08193 Bellaterra, Barcelona, Spain
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek