Robin functions and extremal functions

Tom 80 / 2003

T. Bloom, N. Levenberg, S. Ma'u Annales Polonici Mathematici 80 (2003), 55-84 MSC: 31C15, 32F05. DOI: 10.4064/ap80-0-4

Streszczenie

Given a compact set $K\subset {\mathbb C}^N$, for each positive integer $n$, let $$\eqalign{ V^{(n)}(z)={}&V^{(n)}_K(z)\cr :={}&\sup\left\{ {1\over \hbox{deg}\,p}\,V_{p(K)}(p(z)): p \ \hbox{holomorphic polynomial}{,} \, 1\leq \hbox{deg}\,p \leq n\right\}.\cr} $$ These “extremal-like” functions $V^{(n)}_K$ are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, $$ V_K(z):=\max\left [0,\sup \left\{{1\over \hbox{deg}\,p}\log {|p(z)|}: p \ \hbox{holomorphic polynomial}{,} \, \|p\|_K\leq 1\right\}\right]. $$ Our main result is that if $K$ is regular, then all of the functions $V^{(n)}_K$ are continuous; and their associated Robin functions $$ \varrho_{V^{(n)}_K}(z):=\limsup_{|\lambda|\to \infty} [{V^{(n)}_K}(\lambda z)-\log(|\lambda|)] $$ increase to $\varrho_K:=\varrho_{V_K}$ for all $z$ outside a pluripolar set.

Autorzy

  • T. BloomDepartment of Mathematics
    University of Toronto
    Toronto, ON, Canada M5S 3G3
    e-mail
  • N. LevenbergUniversity of Auckland
    Private Bag 92019
    Auckland, New Zealand
    e-mail
  • S. Ma'uUniversity of Auckland
    Private Bag 92019
    Auckland, New Zealand
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek