The Lax–Phillips infinitesimal generator and the scattering matrix for automorphic functions

Tom 92 / 2007

Yoichi Uetake Annales Polonici Mathematici 92 (2007), 99-122 MSC: 11F03, 11F72, 47A11, 47A40. DOI: 10.4064/ap92-2-1

Streszczenie

We study the infinitesimal generator of the Lax–Phillips semigroup of the automorphic scattering system defined on the Poincaré upper half-plane for ${\rm SL}_2(\mathbb{Z})$. We show that its spectrum consists only of the poles of the resolvent of the generator, and coincides with the poles of the scattering matrix, counted with multiplicities. Using this we construct an operator whose eigenvalues, counted with algebraic multiplicities (i.e. dimensions of generalized eigenspaces), are precisely the non-trivial zeros of the Riemann zeta function. We give an operator model on $L^2(\mathbb{R})$ of this generator as explicit as possible. We obtain a condition equivalent to the Riemann hypothesis in terms of cyclic vectors for a weak resolvent of the scattering matrix.

Autorzy

  • Yoichi UetakeFaculty of Mathematics and Computer Science
    Adam Mickiewicz University
    Umultowska 87
    61-614 Poznań, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek