$\eta $-Einstein contact metric manifolds with purely transversal Bach tensor
Tom 126 / 2021
                    
                    
                        Annales Polonici Mathematici 126 (2021), 241-250                    
                                        
                        MSC: Primary 53C25; Secondary 53D10.                    
                                        
                        DOI: 10.4064/ap201007-18-2                    
                                            
                            Opublikowany online: 17 May 2021                        
                                    
                                                Streszczenie
We prove that every ($2n+1$)-dimensional $\eta $-Einstein contact metric manifold (i.e., the Ricci tensor $S$ satisfies $S = \alpha g + \beta \eta \otimes \eta $ for some smooth functions $\alpha , \beta $) with purely transversal Bach tensor is Einstein.