Functions Equivalent to Borel Measurable Ones

Tom 58 / 2010

Andrzej Komisarski, Henryk Michalewski, Paweł Milewski Bulletin Polish Acad. Sci. Math. 58 (2010), 55-64 MSC: Primary 54H05; Secondary 03E15, 54C10. DOI: 10.4064/ba58-1-7

Streszczenie

Let $X$ and $Y$ be two Polish spaces. Functions $f,g:X\to Y$ are called equivalent if there exists a bijection $\varphi$ from $X$ onto itself such that $g\circ\varphi=f$. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.

Autorzy

  • Andrzej KomisarskiInstitute of Mathematics
    University of Łódź
    Banacha 22
    90-238 Łódź, Poland
    e-mail
  • Henryk MichalewskiInstitute of Mathematics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland
    e-mail
  • Paweł MilewskiInstitute of Mathematics
    University of Warsaw
    Banacha 2
    02–097 Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek