JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the Behavior of Power Series with Completely Additive Coefficients

Tom 63 / 2015

Oleg Petrushov Bulletin Polish Acad. Sci. Math. 63 (2015), 217-225 MSC: Primary 11N37; Secondary 30B30. DOI: 10.4064/ba8018-1-2016 Opublikowany online: 18 January 2016

Streszczenie

Consider the power series $\mathfrak {A}(z)= \sum _{n=1}^{\infty }\alpha (n)z^n$, where $\alpha (n)$ is a completely additive function satisfying the condition $\alpha (p)=o(\operatorname {ln}p)$ for prime numbers $p$. Denote by $e(l/q)$ the root of unity $e^{2\pi il/q}$. We give effective omega-estimates for $\mathfrak {A}(e(l/p^k)r)$ when $r\to 1-$. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.

Autorzy

  • Oleg PetrushovMoscow State University
    Moscow, Russia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek