JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Bulletin Polish Acad. Sci. Math. / Wszystkie zeszyty

## On the Behavior of Power Series with Completely Additive Coefficients

### Tom 63 / 2015

Bulletin Polish Acad. Sci. Math. 63 (2015), 217-225 MSC: Primary 11N37; Secondary 30B30. DOI: 10.4064/ba8018-1-2016 Opublikowany online: 18 January 2016

#### Streszczenie

Consider the power series $\mathfrak {A}(z)= \sum _{n=1}^{\infty }\alpha (n)z^n$, where $\alpha (n)$ is a completely additive function satisfying the condition $\alpha (p)=o(\operatorname {ln}p)$ for prime numbers $p$. Denote by $e(l/q)$ the root of unity $e^{2\pi il/q}$. We give effective omega-estimates for $\mathfrak {A}(e(l/p^k)r)$ when $r\to 1-$. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.

#### Autorzy

• Oleg PetrushovMoscow State University
Moscow, Russia
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek