JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Wszystkie zeszyty

## Gagliardo–Nirenberg inequalities in logarithmic spaces

### Tom 106 / 2006

Colloquium Mathematicum 106 (2006), 93-107 MSC: Primary 26D10; Secondary 46E35. DOI: 10.4064/cm106-1-8

#### Streszczenie

We obtain interpolation inequalities for derivatives: \begin{multline*} \int M_{q,\alpha}(|\nabla f (x)|)\,dx \\\leq C\bigg[ \int M_{p,\beta }({\mit\Phi} _1(x, |f|,|\nabla^{(2)}f| ))\, dx+ \int M_{r,\gamma } ({\mit\Phi} _2(x, |f|,|\nabla^{(2)}f| ))\, dx\bigg] ,\end{multline*} and their counterparts expressed in Orlicz norms: $\|\nabla f\|_{(q,\alpha)}^2\leq C\| {\mit\Phi} _1(x, |f|,|\nabla^{(2)}f|) \|_{(p,\beta)}\, \| {\mit\Phi} _2(x, |f|,|\nabla^{(2)}f|) \|_{(r,\gamma)},$ where $\|\cdot \|_{(s,\kappa)}$ is the Orlicz norm relative to the function $M_{s,\kappa}(t)=t^s(\ln(2+t))^{\kappa}.$ The parameters $p,q,r,\alpha,\beta,\gamma$ and the Carathéodory functions ${\mit\Phi} _1,{\mit\Phi} _2$ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo–Nirenberg inequalities follow as a special case. Gagliardo–Nirenberg inequalities in logarithmic spaces with higher order gradients are also considered.

#### Autorzy

• Agnieszka Ka/lamajskaInstitute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
e-mail
• Katarzyna Pietruska-Pa/lubaInstitute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek