Infinite measure preserving flows with infinite ergodic index
Tom 115 / 2009
                    
                    
                        Colloquium Mathematicum 115 (2009), 13-19                    
                                        
                        MSC: 37A40.                    
                                        
                        DOI: 10.4064/cm115-1-2                    
                                    
                                                Streszczenie
We construct a rank-one infinite measure preserving flow $(T_r)_{r\in\Bbb R}$ such that for each $p>0$, the “diagonal” flow $({T_r\times\cdots\times T_r})_{r\in\Bbb R}\,(p\,{\rm times})$ on the product space is ergodic.