Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po pospisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2008 są ogólnodostępne (bezpłatnie).

Zone and double zone diagrams in abstract spaces

Tom 115 / 2009

Daniel Reem, Simeon Reich Colloquium Mathematicum 115(2009), 129-145 MSC: 06B23, 47H10, 51K99, 54E35. DOI: 10.4064/cm115-1-11 Opublikowany online: 1 January 1970

Streszczenie

A zone diagram of order $n$ is a relatively new concept which was first defined and studied by T. Asano, J. Matou\v{s}ek and T. Tokuyama. It can be interpreted as a state of equilibrium between $n$ mutually hostile kingdoms. Formally, it is a fixed point of a certain mapping. These authors considered the Euclidean plane with finitely many singleton-sites and proved the existence and uniqueness of zone diagrams there. In the present paper we generalize this concept in various ways. We consider general sites in $m$-spaces (a simple generalization of metric spaces) and prove several existence and (non)uniqueness results in this setting. In contrast with previous works, our (rather simple) proofs are based on purely order-theoretic arguments. Many explicit examples are given, and some of them illustrate new phenomena which occur in the general case. We also re-interpret zone diagrams as a stable configuration in a certain combinatorial game, and provide an algorithm for finding this configuration in a particular case.

Autorzy

  • Daniel ReemDepartment of Mathematics
    The Technion – Israel Institute of Technology
    32000 Haifa, Israel
    e-mail
  • Simeon ReichDepartment of Mathematics
    The Technion – Israel Institute of Technology
    32000 Haifa, Israel
    e-mail

Przeszukaj wydawnictwa

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek